基于微毛细管折射率传感器的优化研究

阴成龙 顾进益 张 卓 李 密 宋跃江

(南京大学光通信工程研究中心,江苏南京 210093)

摘要 将4阶回音壁谐振模式(WGM)应用于折射率传感器的检测中。实验中以壁厚为4.8 μm的微毛细管构建 折射率传感器,验证了不同WGM的传感器灵敏度有显著差异。实验获得的最高灵敏度达到48.74 nm/RIU(折射 率单位),对应的探测极限达6.2×10⁻⁶ RIU。通过与模拟结果对比,清晰地识别出4阶WGM共振峰,并且4阶 WGM在传感灵敏度方面有明显的优势。此外,分析了环境温度的扰动对不同径向阶数WGM共振波长的影响,发 现与其他低阶模相比4阶WGM表现出低温度响应的优势。为实现实用的高灵敏度、抗热噪声折射率传感器提供 了理论和实验基础。

关键词 光学器件;折射率传感器;微环谐振腔;回音壁谐振模;倏逝波

中图分类号 TN256 文献标识码 A doi: 10.3788/AOS201333.0728002

Optimization Research on Refractometric Sensor Based on Microcapillary

Yin Chenglong Gu Jinyi Zhang Zhuo Li Mi Song Yuejiang

(Institute of Optical Communication Engineering, Nanjing University, Nanjing, Jiangsu 210093, China)

Abstract The application of 4th radial order whispering-gallery mode (WGM) on refractometric sensor is investigated. A microcapillary resonator with 4.8 μ m wall thickness is researched in experiment and the sensitivity difference among different modes is observed. The highest sensitivity of 48.74 nm/RIU (refractive index unit) and detection limit of 6.2×10^{-6} RIU are achieved. The 4th order WGM resonant spectrum can be picked out clearly by comparing with the simulation results, and it shows a significant advantage against other modes in sensor sensitivity. In addition, the temperature dependent resonant wavelength shifts of different orders WGM are calculated. The 4th order WGM shows a lower response to temperature fluctuations comparing with other low radial modes. This may provide a solid theoretical and experimental foundaiton to build practical refractometric sensors with high sensitivity and low noise.

Key words optical devices; refractometric sensors; micro-ring resonators; whispering-gallery modes; evanescent wave

OCIS codes 280.4788; 230.3990; 230.5750

1 引

言

基于回音壁谐振模式(WGM)的光学微型谐振 腔具有高品质因子 Q,因其在新型微纳有源和无源 光器件中有重要的应用意义而获得广泛的关 注^[1-7]。在众多微腔应用研究中,基于石英毛细管 的生化传感器在探测流体折射率或分子浓度变化的 灵敏度以及对微流体操控等方面有着优良的性 能^[8-13],近年来成为光学传感器领域研究热点。该 类型光学传感器运用微毛细管的横截面构建微环谐 振腔,光环绕毛细管的管壁传播,处于特定波长的光 得到干涉增强产生 WGM 振荡,共振波长由腔体尺 寸和折射率分布共同决定。当注入微毛细管的流体 折射率发生变化时,WGM 在管壁内侧的倏逝波与 流体发生相互作用,因而共振波长的位置发生移动。

收稿日期: 2013-01-14; 收到修改稿日期: 2013-03-11

基金项目:国家自然科学基金(60907022,61205045)、江苏省自然科学基金(BK2011555)

作者简介: 阴成龙(1988—),男,硕士研究生,主要从事新型微光学器件方面的研究。E-mail: yinnju@163.com

导师简介:宋跃江(1976—),男,副教授,硕士生导师,主要从事光纤传感、微纳光子器件以及光纤激光器等方面的研究。 E-mail: yjsong@nju.edu.cn(通信联系人)

通过检测微腔共振波长的移动,间接获得折射率的 变化量。在此前的研究中,微毛细管壁厚通常小于 4 um,这样才能在液芯中积累足够的倏逝波强度, 有效地感知液体折射率的改变。当毛细管壁厚是 3 µm 时,已经实现的折射率传感灵敏度达到 2.6 nm/RIU(折射率单位)^[8]。当微毛细管的壁厚 进一步减小时,在液芯内的 WGM 倏逝场强度增 大,导致光与液体介质作用强度变大,此时具有更高 的传感灵敏度,因此减小微毛细管的壁厚是提高传 感灵敏度的有效途径。当壁厚减小到1 μm 以下 时,实验中灵敏度可以提高到 100 nm/RIU 以 上^[10,12]。不过当壁厚很小(小于2 µm)时,毛细管容 易碎裂,在实际应用中对毛细管的操控变得比较困 难[14],限制了器件的实用性。另一种提高灵敏度的 途径是检测高阶径向模共振峰位置随液芯折射率的 变化。此前的研究表明高阶径向模在液芯中的倏逝 波强度相对于低阶径向模有显著的提高[8,10-11],因 此通过检测高阶模的移动可以获得更高的传感灵敏 度。当壁厚为1 µm 时,通过检测3 阶 WGM 共振 峰漂移,传感灵敏度达到570 nm/RIU^[12]。这种方 案在实现超高灵敏度的同时引入严重的热噪声,系统 热稳定需要借助额外的设备,不利于实现器件微型化 和实用化。此外,将壁厚为 32 µm 的微管与棱镜耦合 时,可以激发出非倏逝波,此时光能量大部分处于微 管流体中,观察到最高灵敏度达 600 nm/RIU^[14]。这 种方案的主要不足在于品质因子Q通常不高,影响了 传感器的探测极限。

本文研究了 4 阶径向模的共振波长随液芯折射 率的变化,提高了折射率传感器的灵敏度。在实验 中使用壁厚为 4.8 µm 的微毛细管构建折射率传感 器,同时检测不同模式共振峰随液芯折射率变化的 漂移量,验证了不同径向阶数 WGM 在灵敏度方面 的差异。通过与模拟结果对比,在微腔共振谱中识 别出 4 阶 WGM,相比其他模式,4 阶 WGM 的传感 灵敏度有很大优势。此外还分析了环境的温度扰动 对传感器性能的影响,发现了 4 阶 WGM 在抗热噪 声方面的独特优势。为实用的高灵敏度、抗热噪声 折射率传感器提供了基础。

2 实验装置

实验中使用的石英毛细管的初始直径为 125 μm,壁厚为25 μm。利用氢氟酸腐蚀就可以制 备出壁厚3 μm以下的微毛细管。在腐蚀毛细管过 程中,发现将壁厚减小到2 μm以下时,毛细管很难 在实验中自由操控,容易发生破碎。但当毛细管壁 厚在 3 μ m 以上时,器件通常能够保持很好的耐用 性,因此使用壁厚 3 μ m 以上的微毛细管,传感器更 具实用性。在实际操作中,使用低浓度(体积分数小 于 10%)的氢氟酸对毛细管外表面作腐蚀处理,通 过控制浓度和时间可以重复地制备出各种壁厚尺寸 的微毛细管。在对微毛细管性能测试时,使用直径 约为 3 μ m 的锥形光纤和微毛细管耦合,观察到系 统 Q 值达到 10⁶ 以上。

基于微毛细管折射率传感器的实验装置如图 1 所示。微毛细管水平固定在一对夹具上,并与直径 为 3 μm 的锥形光纤垂直接触。可调谐窄线宽激光 器用于测量 WGM 共振峰,波长扫描范围设置为 1540~1560 nm。激光进入锥形光纤后与微环谐振 腔发生耦合,激发环形腔的 WGM 振荡。经锥形光 纤输出的光进入光电探测器,完成光电转换并输出 到示波器。通过检测示波器上共振峰的位置可以动 态地跟踪特定共振模式的变化。

3 实验结果和讨论

在传感器灵敏度的表征实验中,使用的微毛细 管内径为 75 μm,壁厚为 4.8 μm,其 WGM 共振谱 如图 2 所示。在 1540~1560 nm 波长区间内,可以 清晰地观察到 3 个自由光谱范围(FSR)周期,相邻 的周期对应于相邻的角向模;自由光谱范围大约为 6.3 nm,在每个 FSR 周期内有 4 个明显的共振峰 (依次标记为 M1、M2、M3 和 M4),分别对应于不同 的径向模。通过液体抽运装置将不同浓度的乙醇水 溶液注入微毛细管内,乙醇浓度范围为 10%~50% (体积分数),记录不同 WGM 的共振波长变化,结果 如图 3 所示。可以明显地看到,不同模式对液芯折射 率的传感灵敏度有着明显的差别。模式 M1 灵敏度 远远高于其他三个模式,当折射率总计改变 0.0193 RIU时,模式 M1 的谐振波长从 1549.172 nm 移动到 1550.112 nm,改变了 940.7 pm,灵敏度达到 48.74 nm/RIU。该灵敏度值与文献「8]报道的灵敏 度(壁厚为3μm)相比提高了约20倍。折射率传感 器的探测极限可定义为 $D_1 = \delta_1 / S_1$,其中 δ_1 为测试 系统的波长分辨率,S为传感器灵敏度。在实验过 程中,模式 M1 的平均 Q 值为1.0×10⁵,考虑可以分 辨的最小线宽为 WGM 共振谱线宽的 1/50^[8,15],波 长分辨率约为 0.3 pm,因此探测极限达到 6.2× 10⁻⁶ RIU。M2 和 M4 灵敏度分别为 1.93 nm/RIU 和 4.22 nm/RIU。模式 M3 共振波长随着液芯折 射率的增大发生了微小的蓝移(-9.9 pm),此结果 主要是受到测试时的实验温度的影响。理论上,当 液芯折射率增加时,WGM 共振峰应该向长波长方 向移动。但由于低阶径向模的传感灵敏度很小(壁 厚为 4.8 µm 时,液芯折射率对 1 阶 WGM 共振波 长的影响可忽略),而共振波长受环境温度影响较 大,当折射率改变导致的波长增大量小于温度降低 导致的波长减小量时,谐振波长会发生蓝移的现象。 M3的变化趋势与逐渐降低的实验温度完全吻合, 关于温度对实验结果影响的讨论见后面的内容。由 此可见,环境温度的扰动对该折射率传感器的性能 有很大影响。

实验中观察到在不同模式之间有显著的灵敏度 差异,其原因在于不同径向阶数WGM在液芯中倏

逝波强度不同,导致光场与液体作用强度的差异。 不同阶数 WGM 灵敏度可以通过求解麦克斯韦方 程定量地分析。根据米氏散射理论,微毛细管谐振 腔中横磁模(TM)电磁场径向分布可以描述为^[8]

$$E_{m,l}(r) = \begin{cases} AJ_{m}[k_{0}^{(l)} n_{core} r] & r \leqslant R_{1} \\ BJ_{m}[k_{0}^{(l)} n_{wall} r] + CH_{m}^{(1)}[k_{0}^{(l)} n_{wall} r] & R_{1} \leqslant r \leqslant R_{2} , \\ DH_{m}^{(1)}[k_{0}^{(l)} n_{air} r] & r \geqslant R_{2} \end{cases}$$
(1)

式中A、B、C和D为待定系数; J_m 和 $H_m^{(1)}$ 分别为m阶 贝塞尔函数和第一类汉克尔函数; n_{core} 、 n_{wall} 和 n_{air} 分 别表示液芯、管壁和空气折射率系数; R_1 和 R_2 分别是 微毛细管的内半径和外半径;共振波长的真空波矢 $k_0 = 2\pi/\lambda$,可以由(1)式确定的电磁场本征方程解 得,不同的共振模式可由径向模数l和角向模数m,即 (m,l)来标记。在计算中, $n_{wall} = 1.444$, $n_{air} = 1.0$,壁 厚取 4.8 μ m。图 4(a)中显示了 1550 nm 附近 WGM 径向模数l分别为 3、4 和 5 时的理论灵敏度曲线。 实验中模式 M1 的灵敏度值为 48.74 nm/RIU,与 4 阶径向模的理论值 53.73 nm/RIU 非常接近,所以可 以推定模式 M1 为4阶 WGM。模式标定的误差主要 来自毛细管管壁尺寸的测量误差。图4(b)中比较了 当微毛细管为不同壁厚时,径向模数l分别为1、2、3 和4的 WGM 在液芯中倏逝波能量所占比率。在计 算中,液芯折射率等于固定值1.33。可以清晰地看 到,在相同壁厚时,4阶径向模在液芯内能量比率明 显高于低阶模(l<4),因此4阶 WGM 对液芯折射率 的改变更敏感。所以在折射率传感器应用中,通过检 测4阶 WGM 共振峰的变化,可以获得更高的灵敏 度。另外,对于4阶 WGM,若将壁厚减小到4.5 μ m, 理论上其传感灵敏度可以达到 80 nm/RIU 以上。

Fig. 4 (a) Calculation of the sensitivity for TM WGM; (b) fractional intensity of WGM in the liquid core as a function of the microcapillary wall thickness (Inset: intensity distribution of the 4th order WGM as the wall thickness is 4.5 μ m)

图 3 所示的实验结果表明环境热噪声对微毛细 管生化传感器的性能有很大的影响。在实际应用 时,温度的影响甚至导致器件无法有效工作(如模式 M3)。为了探测液芯中微小的折射率改变,关键是 能精确地跟踪模式共振峰的移动。环境温度的扰动 在共振峰上附加了随机的漂移,使得折射率测量结 果包含较大误差,并且降低了传感器的探测极限。 WGM 共振峰受温度的影响依赖于微毛细管的壁厚 大小^[16],此外不同径向阶数的 WGM 共振峰对温度 的响应也有很大的不同^[17]。环境温度对共振波长 的影响分为热膨胀导致的微腔直径的改变和有效折 射率的改变两个部分。由温度引起的 WGM 共振 波长改变 Δλ 可以近似表示为[16]

 $\frac{\Delta\lambda}{\lambda} = \alpha\Delta T + \frac{\partial n_{\text{eff}}}{\partial n_{\text{wall}}} \frac{\kappa_{\text{wall}}}{n_{\text{eff}}} \Delta T + \frac{\partial n_{\text{eff}}}{\partial n_{\text{core}}} \frac{\kappa_{\text{core}}}{n_{\text{eff}}} \Delta T, (2)$ 式中右边第一项表示热膨胀效应,后两项分别表示 热光效应对管壁和液芯的影响。计算中,取毛细管 壁厚为 4.5 µm,内径为 75 µm,管壁热膨胀系数 α= $5 \times 10^{-7} \text{ K}^{-1}$,管壁热光系数 $\kappa_{\text{wall}} = 6.4 \times 10^{-6} \text{ K}^{-1}$, 水热光系数 $\kappa_{\text{core}} = -1.0 \times 10^{-4} \text{ K}^{-1[16]}$ 。计算结果 如图 5(a)所示,四个模式共振峰对温度变化响应 $\Delta\lambda/\Delta T$ 分别是 7.61、7.52、6.14、0.81 pm/K。由此 发现,4 阶 WGM 共振峰受温度的影响明显小于低 阶模式(l < 4)。实验中低阶模的 Q 值约为 5×10⁵, 共振谱线宽约为 3 pm,而由于其较大的温度系数

图 5 共振峰对温度变化的响应。(a)壁厚为 4.5 μm, WGM 径向模数分别为 1、2、3 和 4 时共振峰对温度变化的响应; (b)管壁厚度分别为 4.3、4.4、4.5、4.7 μm 时, 4 阶 WGM 共振峰对温度变化的响应

Fig. 5 Resonant peaks responses to temperature change. (a) WGM shift of 1st, 2nd, 3rd and 4th radial modes as the temperature changes with wall thickness of 4. 5 μm; (b) 4th order WGM shift as the temperature changes with different wall thickness of 4. 3, 4. 4, 4. 5 and 4. 7 μm

(大于 6.14 pm/K),因此温度变化对共振波长测试 结果带来极大的影响,甚至会得到错误的结果(如模 式 M3)。而实验中高阶模的 Q 值约为 1.0×10⁵,线 宽约为15 pm,由于其较低的温度系数(0.81 pm/K), 温度每变化1K带来共振波长的改变仅为共振谱线 宽的1/20,此时温度变化对传感器探测结果的影响 几乎可以忽略不计,从而增强了检测的精确度。 图 5(b)是不同壁厚时,4 阶 WGM 共振波长对温度 的响应。可以看到随着壁厚的进一步减小,温度对 共振峰的影响会增大。当壁厚为 4.4 µm 和 4.3 µm 时,温度响应分别为一0.4 pm/K 和一1.48 pm/K, 其原因是进一步减小壁厚时,倏逝波在液芯内强度 变大,液体的负热光系数的影响逐渐占主导作用,使 WGM 共振波长向短波长方向移动。因此只要选择 合适的壁厚(4.4~4.5 μm),通过检测4阶 WGM 共振峰的移动,可以实现高分辨率传感的同时无需 复杂的温度控制装置,具有很大的实用意义。

4 结 论

研究并优化了基于微毛细管的高灵敏度折射率传 感器。实验结果验证了不同径向阶数的 WGM 在传感 灵敏度方面有较大差异,与理论预期相符。其中 4 阶 径向模的传感灵敏度相比低阶径向模有明显的优势, 利用 4 阶模的高灵敏度特性是提高传感器性能的有效 途径。实验中由 4.8 μ m 壁厚的毛细管构成的传感器 获得最高灵敏度达到 48.74 nm/RIU,探测极限为 6.2×10⁻⁶ RIU。模拟结果表明,当壁厚为 4.4~ 4.5 μ m时,4 阶 WGM 的传感灵敏度可达到 80 nm/RIU 以上,并且对温度的响应明显小于其他模式,表现出良 好的抗热噪声特性。研究为制造实用的高灵敏度、抗 热噪声折射率传感器提供了基础。

参考文献

- 1 K J Vahala. Optical microcavities[J]. Nature, 2003, 424(6950): 839-846.
- 2 Wu Xiaowei, Xiao Yunfeng, Yang Yong, *et al.*. Fiber taper coupled high-quality-factor planar microdisk[J]. Chin Opt Lett, 2007, 5(11): 668-670.
- 3 Yun Binfeng, Hu Guohua, Cui Yiping. Polymer micro-ring resonator filter with high quality factor[J]. Acta Optica Sinica,

2011, 31(10): 1013002.

恽斌峰,胡国华,崔一平.高品质因子聚合物波导微环谐振腔滤 波器[J].光学学报,2011,31(10):1013002.

4 Zhang Lei, Lin Guoping, Cai Zhiping, *et al.*. Structural resonances in absorption spectrum of quartz microsphere [J]. Acta Optica Sinica, 2007, 27(1): 94-97. 张 磊,林国平,蔡志平,等. 石英玻璃微球吸收光谱上的结构

共振[J]. 光学学报, 2007, 27(1): 94-97.

5 Wang Jiaxian, Li Junjie, Wu Wenguang, *et al.*. Coupled-mode characteristics of coupled-microdisks and single microdisk cavity with an output waveguide[J]. Acta Optica Sinica, 2011, 31(1): 0106006.

王加贤,李俊杰,吴文广,等. 耦合微盘及带输出波导的单微盘 腔的耦合模式特性[J]. 光学学报, 2011, 31(1): 0106006.

6 Yan Yingzhan, Ji Zhe, Wang Baohua, *et al.*. Evanescent wave excitation of microsphere high-*Q* model using tapered fiber[J]. Chinese J Lasers, 2010, 37(7): 1789-1793.

严英占,吉 喆,王宝花,等. 锥形光纤倏逝场激发微球腔高 Q 模式[J]. 中国激光,2010,37(7):1789-1793.

7 Jiang Nan, Wang Donglin, Pu Xiaoyun. Whispering-gallerymode laser of evanescent wave exciting and coupling dye gain in cylindrical microcavity [J]. Chinese J Lasers, 2007, 34(7): 920-923.

江 楠,王东林,普小云. 消逝波激励及增益耦合的柱形微腔回 音廊模激光辐射[J]. 中国激光,2007,34(7):920-923.

- 8 I M White, H Oveys, X Fan. Liquid-core optical ring-resonator sensors[J]. Opt Lett, 2006, 31(9): 1319-1321.
- 9 I M White, H Zhu, D S Suter, *et al.*. Refractometric sensors for lab-on-a-chip based on optical ring resonators[J]. IEEE Sens J, 2007, 7(1): 28-35.
- 10 V Zamora, A Diez, M V Andres, *et al.*. Refractometric sensor based on whispering-gallery modes of thin capillaries [J]. Opt Express, 2007, 15(19): 12011-12016.
- 11 W Tan, L Shi, X Chen. Modeling of an optical sensor based on whispering gallery modes (WGMs) on the surface guiding layer of glass filaments[J]. Sensors, 2008, 8(10): 6761-6768.
- 12 H Li, X Fan. Characterization of sensing capability of optofluidic ring resonator biosensors [J]. Appl Phys Lett, 2010, 97 (1): 011105.
- 13 Jiang Junfeng, Li Haiwei, Liu Tiegen, et al.. Experiment research on micro-tube biosensor based on hollow optical fiber [J]. Chinese J Lasers, 2010, 37(6): 1421-1425.
 江俊峰,李海伟,刘铁根,等. 基于空心光纤构建微流体生物传 感器的实验研究[J]. 中国激光, 2010, 37(6): 1421-1425.
- 14 T Ling, L J Guo. A unique resonance mode observed in a prismcoupled micro-tube resonator sensor with superior index sensitivity[J]. Opt Express, 2007, 15(25): 17424-17432.
- 15 S Arnold, M Khoshsima, I Teraoka, et al.. Shift of whisperinggallery modes in microspheres by protein adsorption [J]. Opt Lett, 2003, 28(4): 272-274.
- 16 J D Suter, I M White, H Zhu, *et al.*. Thermal characterization of liquid core optical ring resonator sensors[J]. Appl Opt, 2007, 46(3): 389-396.
- 17 Lin Nai, Jiang Lan, Wang Sumei, *et al.*. Simultaneous measurement of refractive index and temperature using a microring resonator[J]. Chin Opt Lett, 2012, 10(5): 052802.

栏目编辑:张 腾